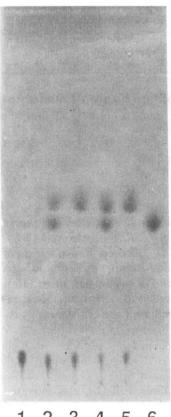
CHROM. 19 392

Note

Enantiomeric separation of N-carbamyltryptophan by thin-layer chromatography on a chiral stationary phase

LINDA K. GONT* and SANDRA K. NEUENDORF INCELL Corporation, 1600 W. Cornell, Milwaukee, WI 53211 (U.S.A.) (Received December 16th, 1986)


The development of a reversed-phase silica gel thin-layer chromatographic (TLC) plate containing a chiral stationary phase (2S,4R,2'RS)-4-hydroxy-1-(2-hydroxydodecyl)proline and copper(II) ions (ChiralplateTM)¹, allowed the separation of amino acids, N-methylamino acids, N-formylamino acids and dipeptides²⁻⁵ using a solvent consisting of methanol, acetonitrile and water. The separation of enantiomers on Chiralplates is now extended to another amino acid derivative, N-carbamyltryptophan using copper (II) acetate in a water-methanol solvent system at reduced temperature.

EXPERIMENTAL

A Chiralplate, 10×20 cm (Macherey-Nagel, Düren F.R.G.), was activated at 105° C for 20 min and allowed to cool; 1 cm from the bottom of the plate $2-\mu$ l samples were applied using $2-\mu$ l glass micropipettes. After the spots had dried, the plate was immersed ca. 3 mm in a solution of 1 mM copper (II) acetate (Sigma), 5% methanol (Aldrich)(pH 5.8) at 16° C and developed until the solvent front reached the 14-cm mark (about 4 h). The TLC tank had been equilibrated with the solvent at 16° C overnight. The plate was dried, sprayed with Ehrlich's reagent (1 g Ehrlich's reagent in 100 ml hydrochloric acid-methanol, 1:3) and heated at 105° C until the color developed (about 5 min). Spots of N-carbamyltryptophan were blue against a yellow background. The sensitivity of detection of N-carbamyltryptophan is $100 \mu g/ml$ or less.

RESULTS AND DISCUSSION

Attempts to separate enantiomers of N-carbamyltryptophan on Chiralplates with solvent systems designed to separate amino acids and their derivatives²⁻⁵ proved unsuccessful. However, a system described for chiral HPLC⁶ was moderately effective for this separation, and modifications improved its effectiveness significantly. A solution of 1 mM copper (II) acetate, 5% methanol (pH 5.8) used at 16°C achieved the separation of the optical isomers of N-carbamyl-D,L-tryptophan (Fig. 1). The temperature at which the development takes place is important for good resolution. At 23°C, the enantiomers were observed to overlap, but as the temperature was reduced,

1 2 3 4 5 6

Fig. 1. Separation of N-carbamyl-D,L-tryptophan. Samples of N-carbamyl-D-tryptophan and N-carbamyl-L-tryptophan were spotted on a Chiralplate, developed, and visualized as described in Experimental. Lane 1: blank; lane 2: 1 mg/ml N-carbamyl-D,L-tryptophan; lane 3: 1 mg/ml N-carbamyl-D-tryptophan; lane 4: 1 mg/ml N-carbamyl-D,L-tryptophan; lane 5: 1 mg/ml N-carbamyl-D-tryptophan; lane 6: 1 mg/ml N-carbamyl-L-tryptophan.

the separation improved. At 16° C, the R_F of the D-isomer was 0.55 and that of the L-isomer was 0.44 with no overlap of the two enantiomers. Increased solvent front regularity was achieved by the addition of 5% methanol. When less or no methanol was added, excellent separation was achieved, but the jagged solvent front made lane-to-lane comparisons difficult.

So far, attempts to resolve other enantiomeric carbamylamino acids have been unsuccessful. However, further modifications of this system may make it generally useful for these compounds.

ACKNOWLEDGEMENTS

We would like to thank Dr. Jan Lukszo and Mr. Rocco Gogliotti for the synthesis of N-carbamyl-D-tryptophan. This work was supported by National Science Foundation grant CPE-8313850.

NOTES 345

REFERENCES

 K. Günther, J. Martens and M. Schickedanz, Angew. Chem., 96 (1984) 514; Angew. Chem., Int. Ed. Engl., 23 (1984) 506.

- 2 U. A. Th. Brinkman and D. Kamminga, J. Chromatogr., 330 (1985) 375.
- 3 K. Günther, J. Martens and M. Schickedanz, Naturwissenschaften, 72 (1985) 149.
- 4 K. Günther, J. Martens and M. Schickedanz, Z. Anal. Chem., 322 (1985) 513.
- 5 K. Günther, J. Martens and M. Schickedanz, Arch. Pharm. (Weinheim), 319 (1986) 461.
- 6 K. Sugden, C. Hunter and G. Lloyd-Jones, J. Chromatogr., 192 (1980) 228.